Absolute Value

The distance (on a number line) between a number and its origin (normally 0).

\[|3| = 3 \quad |-3| = 3 \]

1-Variable Absolute Value Equations

\[|x + 2| = 4 \]

The expression "x + 2" is equal to 4 or -4 because the absolute value of both is 4.

\[|2 + 2| = |4| = 4 \]

\[|-6 + 2| = |-4| = 4 \]
An absolute value expression, by itself, CANNOT be equal to a negative because the absolute value of a number/expression is always positive!

\[|x| = -2 \quad |3x + 1| = -4 \quad |x + 4| = -3 \]

NO SOLUTION

Solving 1-Variable Absolute Value Equations

1. Get the absolute value expression (what's inside the sticks) by itself using inverse order of operations.

2. Check and see if the absolute value expression is equal to a negative value (if so, there is no solution).

3. Write two equations to represent the two possible values of the absolute value expression (one with a positive solution, one with a negative solution)

4. Solve both equations for the possible values of x that make the equation true.
Solve the equation.

\[|x + 3| = 5 \]

\[x + \frac{3}{6} = \frac{5}{6} \]

\[x = \frac{2}{3} \]

\[x = -\frac{8}{3} \]

\[x = 2, -8 \]

Solve for \(x \).

\[|3x - 4| = 5 \]

\[3x - \frac{4}{6} = \frac{5}{6} \]

\[3x = \frac{9}{3} \]

\[x = 3 \]

\[x = \frac{-1}{3} \]

\[x = 3, -\frac{1}{3} \]
Solve for x.

$|x + 3| + 2 = 5$

\[x + 3 = 3 \quad \text{or} \quad x + 3 = -3 \]

\[x = 0 \quad \text{or} \quad x = -6 \]

$x = 0, -6$

Solve for x.

$|x + 8| - 5 = 2$

\[x + 8 = 7 \quad \text{or} \quad x + 8 = -7 \]

\[x = -1 \quad \text{or} \quad x = -15 \]

$x = -1, -15$
Solve for x.

\[4|x + 8| = 56 \]

\[\frac{4}{4} \]

\[|x + 8| = 14 \]

\[x + 8 = 14 \]
\[x + 8 = -14 \]

\[\frac{8}{8} \]
\[\frac{-8}{8} \]

\[x = 6 \]
\[x = -22 \]

\[x = 6, -22 \]

A cannot distribute with an absolute value

Solve for x.

\[|x - 5| = 5 \cdot 8 \]

\[\frac{8}{8} \]

\[|x - 5| = 40 \]

\[x - 5 = 40 \]
\[x - 5 = -40 \]

\[\frac{5}{5} \]
\[\frac{-5}{5} \]

\[x = 45 \]
\[x = -35 \]

\[x = 45, -35 \]
Solve for x.

\[-10|x + 2| = -70\]

\[\frac{-10}{-10} \quad \frac{-70}{-10} \]

\[|x + 2| = 7\]

\[x + 2 = \frac{7}{2} \quad x + 2 = -\frac{7}{2}\]

\[x = 5 \quad x = -9\]

$x = 5, -9$

Solve the equation.

\[-4|x - 2| - 9 = -37\]

\[\frac{-4}{-4} \quad \frac{-9}{-4}\]

\[-4|x - 2| = -28\]

\[|x - 2| = 7\]

\[x - 2 = \frac{7}{2} \quad x - 2 = -\frac{7}{2}\]

\[x = \frac{9}{2} \quad x = \frac{1}{2}\]

$x = 9, -5$
Solve the equation.

\[3 - 1|x + 3| = 6 \]

\[\frac{-3}{-1} \]

\[\frac{|x + 3| = 3}{-1} \]

\[|x + 3| = -3 \]

No solution

Solve the equation.

\[4 - 9|-x - 6| = -14 \]

\[\frac{-4}{-9} \]

\[\frac{-9|-x - 6| = -18}{-9} \]

\[|-x - 6| = 2 \]

\[\begin{align*}
 -x - 6 &= 2 \\
 \frac{-x}{-1} &\quad \frac{6}{-1} \\
 x &= 8 \\
 x &= -8 \\
 x &= -8, -4
\end{align*} \]
Avery is solving the following equation.

\[-2 |m - 2| = -6\]

Which equation is equivalent to Avery's equation?

A. \(-2m + 4 = -6\)
B. \(|m - 2| = -3\)
C. \(2m + 4 = 6\)
D. \(|m - 2| = 3\)

Hayden solved this equation using steps shown.

\[|x - 3| = 4\]

Step 1: \(x - 3 = 4\)
Step 2: \(x - 3 + 3 = 4 + 3\)
Solution: \(x = 7\)

Based on the definition of absolute value, what additional step should Hayden do to determine the complete solution to the equation?

A. Hayden should include the opposite of 7 as a second solution.
B. Hayden should include the reciprocal of 7 as a second solution.
C. Hayden should also solve for \(-x + 3 = -4\) to determine a second solution.
D. Hayden should also solve for \(x - 3 = -4\) to determine a second solution.
Absolute value functions are a type of **piecewise function** because it can be written in 2 pieces.

\[y = |x| \]

\[f(x) = \begin{cases}
 x, & \text{if } x \geq 0 \\
 -x, & \text{if } x < 0
\end{cases} \]
Piecewise Functions

- Functions that behave differently based on the input (domain/x) value.

- They will have more than one "piece" and can include more than one function type.

- Need to be able to find the value of the output from a graph and from a function (equation).

****REMEMBER***

An ordered pair is included in the solution set if it has a shaded circle.

An ordered pair is **NOT** included in the solution set if it has an open/non-shaded circle.
Finding an Output Value from a Piecewise Graph

f(3) means that "when 3 is input into function f", so look what the output value is when x = 3.

\[f(-1) = 5 \]

Find:

\[f(1) = __ \]
\[f(-4) = -2 \]
\[f(-2) = 6 \]
\[f(0) = 0 \]
\[f(-3) = -2 \]
Finding an Output Value from a Piecewise Function

The "function" looks complicated, but read it from **right to left**, starting with the domain.

\[
f(x) = \begin{cases}
-2x - 4 & \text{if } x \leq 2 \\
4x - 9 & \text{if } x > 2
\end{cases}
\]

"If the domain (x-value) is less than or equal to 2, then use the function, -2x - 4."

"If the domain is greater than 2, then use the function, 4x - 9."

Find:

\[
\begin{align*}
 f(4) &= 0 \\
 f(-2) &= 4 \\
 f(2) &= 2 \\
 f(3) &= 2 \\
 f(0) &= 2
\end{align*}
\]
\[f(x) = \begin{cases}
-x - 4 & , \quad x < 3 \quad \times \\
x^2 - 7 & , \quad 3 \leq x \leq 10 \quad \checkmark \\
\frac{120}{x} + 5 & , \quad x > 10 \quad \times
\end{cases} \]

Evaluate the function at the specified input.

\[f(4) = \boxed{9} \quad (4)^2 - 7 \]

\[f(x) = \begin{cases}
2x + 1 & \text{if } x < 1 \\
-2x + 3 & \text{if } x \geq 1
\end{cases} \]

\[
\begin{align*}
\text{f(4) &= } -2(4) + 3 \\
&= -5 \\
\text{f(-3) &= } 2(-3) + 1 \\
&= -5 \\
\text{f(1) &= } -2(1) + 3 \\
&= 1
\end{align*}
\]
\[f(x) = \begin{cases}
 x - 1 & \text{if } -x \leq -2 \\
 2x - 1 & \text{if } -2 < -x \leq 4 \\
 -3x + 8 & \text{if } -x > 4
\end{cases} \]

\[f(-2) = x - 1 \]
\[= (-2) - 1 \]
\[= -3 \]

\[f(x) = \begin{cases}
 x + 5 & \text{if } -x < -2 \\
 -4 & \text{if } -x \geq -2
\end{cases} \]

\[f(-2) = -4 \]
Based on the table shown below, which statement is correct?

<table>
<thead>
<tr>
<th>Column A</th>
<th>Column B</th>
</tr>
</thead>
</table>
| $f(3)$ where $f(x) = \begin{cases}
2x - 7, & \text{if } x \leq 1 \\
-x + 9, & \text{if } x > 1
\end{cases}$ | $f(2)$ where $f(x) = \begin{cases}
x + 2, & \text{if } x < 8 \\
3x - 3, & \text{if } x \geq 8
\end{cases}$ |

$\begin{align*}
-(3) + 9 &= 6 \\
(2) + 2 &= 4
\end{align*}$

(a) The output in Column A is greater.
(b) The output in Column B is greater.
(c) The two quantities are equal.
(d) The relationship cannot be determined.